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Abstract: The strained seven-mem-
bered cyclic ketene imine 9, obtained
by cycloaddition of thiocarbonyl ylide
6 with 2,3-bis(trifluoromethyl)fumaro-
nitrile (7), underwent base-catalyzed
dimerization at room temperature on
treatment with KCN in acetonitrile or
with proton sponge in acetonitrile or

(6SR,3'RS)-13 and (6SR,3'SR)-13, were
formed in 1:1 ratio in high yield. X-ray
analysis revealed a deep-seated struc-
tural change which is unrelated to
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known dimerization pathways of
ketene imines. In 13, one of the seven-
membered rings is opened, and attach-
ed to the second unit by a thioimidate
group. An ionic chain reaction with a
formal fluoride ion as transfer agent
offers a rationalization.

CDCl,;. Two diastereoisomeric dimers,

Introduction

Ketene imines rank below ketenes in their propensity to di-
merize. Whereas dialkylketene N-methylimines slowly oligo-
merize at room temperature,!! diphenylketene N-methyl-
imine dimerizes on heating (125°C, six weeks) to give the
methyleneazetidine 1;? the reaction corresponds to the
spontaneous dimerization of ketene which affords 3-methyl-
enepropanolide. According to Gambaryan, bis(trifluorome-
thyl)ketene N-phenylimine (2) is far more electrophilic than
unfluorinated ketene imines.”! Although thermostable up to
150°C, 2 is converted to 3, that is, the unsymmetrical type of
dimer, by catalysis with triethylamine at 20°C." In pyridine,
2 affords the sym-dimer 4 which is less stable, as shown by
the subsequent conversion 4 — 3 (Scheme 1).[*]

Cyclic seven-membered ketene imines became available
by two-step cycloadditions of thiocarbonyl ylides which are
sterically hindered at one terminus, with 2,3-bis(trifluorome-
thyl)fumaronitrile (7)."®! When 1,1,3,3-tetramethylindan-2-
thione S-methylide (6) is set free from the dihydro-1,3,4-
thiadiazole (5) in the presence of 7, the spirocyclic ketene
imine 9 is formed nearly completely (Scheme 2).”) The cu-
mulated double bond system creates high strain in the
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Scheme 1. Dimerization of open-chain ketene imines.

seven-membered ring of 9; the X-ray analysis revealed
angle deformations.”

Storable in the crystalline state, 9 is converted in CD;CN
solution—slowly even at room temperature—to the spiro-
thiolane 11, the cyclopropane 10 (+thione), and compound
12 in parallel reactions. At 80°C, spirothiolane 11 likewise
disappears in favor of 10 and 12.”) The variety of reactions
was interpreted by assuming the 1,5-zwitterion 8 as an inter-
mediate. The switching from the concerted to the stepwise
pathway of cycloaddition occurs when 1,3-dipole and dipo-
larophile drastically differ in nucleophilic and electrophilic
character (review: ref. [10]).

Results and Discussion

A few crystals of KCN initiated the fading of the yellow so-
lution of 9 in acetonitrile, and soon colorless crystals precip-
itated; after 15 min at room temperature, 13 was obtained
in 89 % yield. Elemental analyses and determination of the

4353



FULL PAPER

R,C=S + CH N,

o

R,C=8 +
R Ry H,
F,Comf—ym CN NC nd—fu CF,
NC CF, F,C CN

10 1

o

Scheme 2. Formation and reactions of the strained cyclic seven-mem-
bered ketene imine 9.

molecular mass established a dimer, and the '’F NMR spec-
trum revealed two diastereoisomers in nearly 1:1 ratio. Ten
mol% of 1,8-bis(dimethylamino)naphthalene  (proton
sponge) in acetonitrile or—somewhat slower—in CDCl;
likewise induced dimerization of 9. The separation of the dia-
stereoisomers was achieved by fractional crystallization:
13 A was isolated pure, and 13 B was enriched to 85 %.

The X-ray diffraction pattern of 13 A disclosed a structure
which showed no relation to the known types 3 and 4 of
ketene imine dimers. Obviously, the ring strain is essential
for the different course of dimerization.

The compact structure of 13 A was dissected in Figure 1
into a Northern and Southern hemisphere to allow closer in-
spection. The first contains one F-atom less than 9, and the
second one more. In the Northern part the hydro-1,3-thiaze-
pine ring is preserved, whereas the ring-opened Southern
part is attached to the 4-position of the Northern by a thio-
ether function, thus generating a thioimidate structure.

Abstract in German: Das 7-gliedrige cyclische Ketenimin 9,
das durch Cycloaddition des 1,1,3,3-Tetramethylindan-2-
thion-S-methylids (6) mit 2,3-Bis(trifluormethyl)fumarnitril
(7) erhalten wurde, trat bei Raumtemperatur in eine Basen-
katalysierte Dimerisierung ein; Katalysatoren waren KCN in
Acetonitril sowie Protonenschwamm in Acetonitril oder
CHCl;. Zwei diastereomere Dimere, (6SR,3'RS)-13 und
(6SR,3'SR)-13 (~50:50), wurden in hoher Ausbeute gebildet.
Die Rontgenstrukturanalyse lehrte, daf3 nur einer der sieben-
gliedrigen Ringe erhalten blieb; aus dem des zweiten Mole-
kiils ging ein 2-Azabutadien-System hervor, und ein Imid-
sdaure-thioester bietet die Verkniipfung. Es gibt keine Bezie-
hung zu den bekannten Wegen der Ketenimin-Dimerisierung.
Als Mechanismus der Dimerisierung wird eine ionische Ket-
tenreaktion mit Fluorid-Ubertragung vorgeschlagen.
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Figure 1. Structure of dimer (65R,3'RS)-13 (13A, ZORTEDP plot; thermal
ellipsoids at 30% probability level); C4—S1’ is the common link between
the two halves. Selected bond lengths [A]: S1-C2 1.832(4), C2-N3
1.445(5), N3=C4 1.250(5), C4—CS 1.494(5), C5=C5a 1.2995(5), C5—-C6
1.536(5), C6—C7 1.550(6), C5a—F 1.318(5), 1.323(4), C4—S1’' 1.795(4), S1'—
C2' 1.794(3), C2'—C3' 1.563(5), C3'—C4' 1.527(6), C4'=C5' 1.336(6), C5'—F
1.340(5), C5'—N6' 1.364(6), N6'=C7' 1.274(4), C6—CF; 1.529(5), C3'—CF;
1.536(5), C4'—CF; 1.505(6); selected bond angles [°]: S1-C2-N3 115.5(2),
C2-N3-C4 131.5(3), N3-C4-C5 131.0(3), C4-C5-C6 119.3(3), C5-C6-C7
109.5(3), C6-C7-S1 109.1(2), C7-S1-C2 100.9(2), F-C5a-F 108.2(3), C4-
SI'-C2" 101.4(2), C3'-C4'-C5' 123.4(4), C4-C5'-N6 128.5(4), C5'-N6'-C7'
126.3(4), F-C5'-N6' 113.7(3).

The dihedral angle N3=C4—C5=C5A amounts to 58.6°;
the conjugation is weakened by the buckled structure of the
seven-membered ring. The Southern part contains an azabu-
tadiene system which is twisted at the C5—C6 bond by
45.7°. The van der Waals pressure of the spirosystem is re-
sponsible for long C—C bonds in the Northern indane ring
(1.594, 1.591 A), a phenomenon known from related heavily
substituted indan-spiro-thiolanes.!!

The bond C5=CF, in 13A (1.299 A) is even shorter than
in 1,1-difluoroethene (1.316 A, gas phase, electron diffrac-
tion and microwave data™). Not less remarkable is the
angle F-C5a-F 108.2° at the sp>hybridized C-atom which
finds a parallel in 1,1-difluoroethene: F-C-F 109.7 and
H-C-H 119.3°. This F-C-F angle contraction at olefinic
C-atoms found much attention in the past (review:[')). Fur-
thermore, the C—CF; bond length at the saturated C-atoms
C6 and C3' (1.529, 1.536 A) is found shorter by 0.03 A for
CF; at the olefinic C4' (1.505 A).

Two stereogenic centers (C-6, C-3") convey diastereotopic-
ity to the methyl groups in both indane systems. The 'H and
BBC parameters of eight methyl groups reveal two pairs of
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isochronous signals which suggest a time-averaged symmetry
element in one of the indane residues. Fast rofation at the
N6'=C7" bond could confer pairwise identity to the methyl
groups in the Southern indane. However, an elegant DNMR
study of 2,2,5,5-tetramethylcyclopentylidene N-arylimines, a
related model system, by Knorr et al." established N-inver-
sion (lateral shift). In the case of 13, N-inversion would lead
to a cis-2-azabutadiene which should provide a second set of
non-equivalent methyl groups. The isochronism of some
methyl signals could well be coincidental.

The H-decoupled ’F NMR spectrum of 13 A shows inte-
grals in the ratio of 1:1:1:3:3:3. The CF; groups at the satu-
rated C-3' and C-6 resonate at lower frequencies. On the
high-frequency side, the signals of the olefinic 5'-F and 4'-
CF,; are adjacent, and their coupling with *J(F,F)=23.8 Hz is
normal. Only one of the two 5a-F atoms couples with 6-CFj;
Figure 1 exhibits the different distances. The ensemble of
multiplicities and F,F-coupling constants allows an unequiv-
ocal assignment, but at first the small %J(FF)=2.6 Hz for
=CF, in position 5a (FF distance 2.14 A) appeared as a
stumbling block, since it is not in line with the concept of
through-space coupling (review: ref. [15]). In fact, values of
ZJ(FF) vary widely and are very sensitive to substituents,
due to large anisotropy effects with positive and negative
contributions.®! Among trifluorovinyl compounds, 14 has a
high 2J(FF), whereas the B-carbonyl derivatives 15 stand at
the low end"” (Scheme 3). The difluorovinylidene group of
13 A has a B-C=N double bond, thus showing a remote rela-
tion to 15.

CFCH,O0  F

g o = ™
7 6“‘\ CF 2J(F,F)
R ol e ¢

N= CF2 2J(F.F) 26 Hz 14 101.6 Hz

S
0

XA%_<F>

FF
134 15 X=F <2 Hz
CF, 6Hz

Scheme 3. Dimer 13A = (6SR,3'RS)-13 and comparison with %J(F,F)
values of trifluorovinyl compounds.

The NMR spectra of 13 A and 13B are rather similar and
in harmony with diastereoisomerism. Among the "F chemi-
cal shifts, the two vinylic 5a-F present the greatest differen-
ces.

The configuration shown in Figure 1 is identified as
(65,3a’R)-13, and the centrosymmetric space group of the
unit cell indicates two molecules of each enantiomer. When
(R)-9 and (S5)-9 enter the dimerization process, in principle,
the two rac-dimers, (6SR,3'RS)=13 A and (6SR,3'SR)=13B,
may be formed with different rates. However, the ratio
13A/13B=1:1 (within analytical limits) suggests random
combination of (R)-9 and (S)-9. Racemic dimer (6SR,3'RS)-
13 has the lower solubility and was isolated pure.

The various reactions of 9 illustrated in Scheme 2 disclose
the zwitterion 8 as deus ex machina, but 8 does probably not
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occur on the mechanistic pathway leading to 13. A rationali-
zation with an ionic chain reaction and the fluoride anion as
transfer reagent is presented in Scheme 4. Fluoride—the de-
viating initiation step will be discussed below—attacks C-4,
that is, the electrophilic center of ketene imine 9, and af-

H H
s CCNF +(F) s CCNF3
R2< 4 8 - R2< -
N=Z"CF, N ™CF,
9 16 F
g2 ON
rl _ [ s cn
N=z”"~CF, R,C=N CF,
S H, 413
R,C=N N F o CR
2
CF, i
F CF,
17
- R, =
—(F)L :
H: ©N
A of~-CF, g CN
2< 4 5. 52 CF3
N=2CF, R{ _,
5_H, N=z”"™CF,
CN
= . X
R,C N>=_\S><CF3
19 X=CN
F
Fooh 20 X =CH,CN
13 21 X=COl,

Scheme 4. Suggested pathway for the base-catalyzed dimerization of the
cyclic ketene imine 9.

fords the cyclic aza-allyl anion 16. Ring opening generates
18 which holds an azabutadiene system and a thiolate func-
tion. The latter reacts with C-4 of a second molecule of 9,
thus providing 17. The loss of the anionic charge is achieved
by elimination of fluoride from the 5-CF; of 17 and forma-
tion of the exo-difluoromethylene group of 13. A formal
fluoride is transferred to another molecule of 9, and a new
cycle is started. The different behavior of the cyclic anions
16 and 17 is an open problem.

In the initiation with KCN, the cyanide adds to the C-4 of
9 and sets the cascade in motion. The cyclic anion 19 fur-
nishes a “dimer” molecule 13 in which 5'-F is replaced by 5'-
CN. With the fluoride transfer to 9, the chain reaction starts,
as described in Scheme 4. In the KCN-catalyzed process in
acetonitrile, the involvement of the lyate ion NC-CH,  is
improbable (pK, in DMSO: HCN 12.9, MeCN 31.3).0!81

1,8-Bis(dimethylamino)naphthalene is a stronger base
than triethylamine, but non-nucleophilic.'”) With a pK, of
18.18 in acetonitrile® and an autoprotolysis constant of 3 x
10 for this solvent,” a 0.06 M solution of “proton sponge”
is approximately 2x107°m in NC-CH, ", sufficient to trigger
the ionic chain via 20. Proton sponge in CHCl; as solvent
also initiated dimerization. A deprotonation of CHCI; is
likely; according to a recent compilation,? the acidity of
CHCI, exceeds that of MeCN by four pK,(H,O) units.
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Experimental Section

General: "F NMR spectra (90.6 MHz) were taken with a Bruker spec-
trometer; CFCl; served as internal frequency standard. (1,1-Dichloro-
2,2,2-trifluoroethyl)benzene (0 —78.2 ppm; abbreviated “dichlo”) was
used as weight standard for quantitative analysis (+ 5% relative). Vapor
phase osmometer: Mechrolab 301A.
2,3,6',7-Tetrahydro-4',5'-didehydro-1,1,3,3-tetramethyl-5',6'-bis(trifluoro-
methyl)-spiro[1H-indene-2,2'(2H)-[1,3]thiazepine]-6'-carbonitrile (9), see
ref. [9].

Dimerization of ketene imine 9: a) Crystalline 9 (440 mg, 1.02 mmol),
dissolved in dry MeCN (1 mL) at room temperature, was stirred with
KCN (~10 mg). Although the catalyst remained undissolved, the yellow
solution lighted up in 15 min. After diluting the supersaturated solution
1:1 with CDCl; and removing KCN by filtration, the ’F NMR spectrum
showed the disappearance of 9 and the formation of 13 A and 13B in the
ratio 48:52 (integrals of q 3'-CF; + d 6-CF;, see below). The solvent was
evaporated, and the residue recrystallized from hot MeCN: 13 (384 mg,
89%) was obtained in two fractions. The first consisted of 13 A as color-
less needles, m.p. 205-207°C, and the second fraction, m.p. 174-175°C,
contained 13A/13B ~15:85 (YFNMR signals of d 5a-F at —60.6 and
—63.0 ppm).

b) Ketene imine 9 (204 mg, 0.47 mmol) and 1,8-bis(dimethylamino)naph-
thalene (“proton sponge”, 10 mg, 48 umol) were treated in dry MeCN
(0.7mL). After 2 min at room temperature, the crystallization of 13 set
in, and after 1 h, addition of the same volume of CDCl, led to a clear so-
lution. YFNMR analysis with “dichlo” provided 77% of 13A + 13B.
According to the integrals of 5a-F, the ratio was 13A/13B =53:47; more
reliable is 50.4:49.6 based on q 3'-CF; + d 6-CF.

c) Ketene imine 9 (0.53 mmol) in CDCl; (0.5mL) was treated with
proton sponge (69 umol). After 20 min at room temperature, the
FNMR analysis with “dichlo” showed 9/13 27:73. No 9 was left after
100 min, and the yield of 13 was 89%. The CF; integrals indicated 13 A/
13B 51.5:48.5.

Properties of dimer 13A: '"H NMR (360 MHz): 0=1.27, 1.29, 1.39 (3s,
3Me), 141, 143 (2, 2x2Me), 1.53 (s, Me), 3.23, 3.37 (sharp AB,
2J(H,H)=14.8 Hz, B branch further split with J(H,F)=1.7 Hz, 7-H,),
3.61, 3.80 (less sharp AB, 2/(H,H)=13.5 Hz, 2-H,), 7.07-7.11, 7.18-7.21,
7.30-7.33 ppm (3m 2:4:2, 8 arom. CH); *C NMR (20.2 MHz, not fully
resolved): =242, 26.0, 27.1 (2x), 28.2, 28.4 (2x), 30.8 (6 q, 8Me), 30.9
(t, CH,), 50.9 (s, 2C,), 53.2, 55.9, 77.2, 90.4 (4s, 4C,), 113.0, 113.7 (25,
2CN), 121.8, 122.4 (3x), 127.3, 127.4, 128.3 (2x) (5d, 8 arom. CH), 123
(2 or 3 q, 'J(C,F) ~280, 2 or 3 CF;), 146.5 (t or dd), 145.1 (2x), 147.1,
1482, 172.8, 206.9 ppm (55, 6 C,); F NMR (94.2 MHz, 'H-decoupled):
0=-53.5 (q, */=23.8 Hz, 5-F), —54.5 (dq, *7=23.7, °J ~5 Hz, 4-CF;),
—60.5 (d, J=2.5Hz, 5a-F), —69.1 (dq, 2/=2.6 Hz, J=5.3 Hz, 5a-F),
—~72.65 (q, J=4.9 Hz, 3-CF;), —72.76 ppm (d, °J=5.3 Hz, 6-CF;); IR
(KBr): v=756 m (arom. out-of-plane deform.), 1136, 1198 vs, 1244 s,
1313’5, 1325 s (C—F stretch.), 1452 m, 1484 m, 1590 w (arom. ring vibr.),
1626's, 1666 vs, 1710 vs (C=N, enamine-C=C), 2260 cm~' vw (C=N); MS
(140-150°C): miz (%): 864 (35) [M]*, 849 (1) [M—Me]*, 795 (12)
[M—F]*, 451 (9) [M/2+F]*, 432 (7) [M/2]*, 417 (8) [M/2—Me]™, 413 (80)
[M/2—F]*, 363 (10) [M/2—CF;]*, 204 (9) [Ci3H ST, 172 (91) [C3He) T,
171 (100) [C;3Hys)*, 156 (60) [C,Hy,l T, 149 (27), 141 (22), 109 (24), 97
(28), 95 (33), 69 (32) [CF;]*, 55 (48); elemental analysis calcd (%) for
CuoH36F1oN,S, (864.85): C 55.56, H 4.20, N 6.48; found C 55.62, H 4.23, N
6.59; molecular mass (vapor phase osmometry, CHCL;): 819.

Properties of dimer 13B: 'H NMR (360 MHz): 6 =1.18, 1.41 (2q, 2Me),
1.42, 1.44 (2q, 2x2Me), 1.46, 1.53 (2q, 2Me), 3.27, 3.35 (AB, J(H,H) =
14.9 Hz, left branch split by J(F,H)=1.5 Hz, 7-H,), 3.81 (brs, 2'-H,), 7.13-
7.35ppm (3m, 8 arom. CH); ’F NMR (94.2 MHz, 'H-decoupled): 0=
—53.3 (q, “7=23.1 Hz, 5'-F), —54.4 (m, unresolved, 4-CF;), —63.0 (m, un-
resolved, 5a-F), —69.6 (dq, J=4.9, >J=1.5Hz, 5a-F), -72.2 (q, °J=
5.3 Hz, 3-CF;), —72.4 ppm (d, °J=4.9 Hz, 6-CF;); IR and MS: similar to
13 A; elemental analysis calcd (%) for C,HsF;,N,S, (864.85): C 55.56, H
4.20, N 6.48; found C 55.64, H 4.17, N 6.44.

X-ray diffraction analysis of 13A (Figure 1): monoclinic, space group
P2,/n(14). Unit cell dimensions: a=906.5(3), b=2939.0(7), c=
1561.1(3) A, B=104.67(2)°, V=4023.6 A3, Z=4, poeq = 1.428 gecm™>,
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F(000)=1776, T=294(2) K, u=2.136 cm~'. Data collection; ENRAF-
Nonius diffractometer CAD4 operating with Mog, radiation, A=
0.71069 A, crystal mounted in a glass capillary, w-26 scan, scan width
0.80° +0.349 tan@, maximum measuring time 180 s, range 4 < 20 < 48°
for all +h, +k, +/ reflections; 7490 reflections collected, 5004 indepen-
dent, and 3007 > 20(); three standard reflections checked every 2 h; re-
fined parameters 529. Structure solution by SHELXS-86 and refinement
by SHELXL-93.”! Final R1=0.0451 and wR2=0.1178 for 3007 reflec-
tions with / > 20(f). Weight: SHELX1.-93. Maximum and minimum of
the final difference Fourier synthesis +0.20 and —0.17 e A, Non-H
atoms were refined anisotropically with inclusion of H-atoms in calculat-
ed positions and fixed isotropic U; ZORTEP plot.”*’!

CCDC-233192 contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge via www.ccdc.cam.
ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax:
(4+44)1223-336033; or deposit@ccdc.cam.uk).
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